MVR COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I

1. Hardware and Software Concepts,

2. Problem Solving: Algorithm / Pseudo code, flowchart,

3. program development steps, TECHNOLOGY
4. computer languages:

a. Machine,

b. Symbolic ,

c. Highlevel languages

BASICS OF C:

1. Structure of a C program,

2. identifiers,

3. basic data types and sizes,

4. Constants, Variables,

5. Arithmetic,

6. relational and

7. logical operators,

8. increment and decrement operators,

9. conditional operator,

10. assignment operator

HISTORICAL DEVELOPMENT OF C
By 1960 a hoard of computer languages had come into existence almost each for a specific purpose. For example, COBOL was being used for Commercial Applications, FORTRAN for Engineering and Scientific Applications and so on. At this stage people started thinking that instead of learning and using so many languages which can program different purpose, why not use only one language which can program all possible applications. Therefore, an international committee was set up to develop such a language. This committee came out with a language called ALGOL 60. However, ALGOL 60 never really became popular because it seemed too abstract, too general. To bind Programming Language (CPL) was developed at Cambridge University. CPL was an attempt to bring ALGOL 60 down to earth. However, CPL turned out to be so big, having so many features, that it was hard to learn and difficult to implement.

Basic Combined Programming Language (BCPL), developed by Martin Richards at Cambridge University aimed to solve this problem by bringing CPL down to its basic good features. But unfortunately it turned out to be too less powerful and too specific. Around same time a language called B was written by Ken Thompson at AT & T's Bell Labs, as a further simplification of CPL. But like BCPL, B too turned out to be very specific. Ritchie inherited the features of B and BCPL., added some of his own and developed C. Ritchie's main achievement is the restoration of the lost generally in BCPL and B, and still keeping it powerful.

C is a programming language developed at AT & T’s Bell laboratories of USA in 1972. It was designed and written by DENNIS RITCHIE. C has the features of both BASIC and PASCAL. As a middle level language, C allows the manipulation of bits, bytes and addresses the basic elements with which computer functions. C’s code is very portable, in the sense that it is easy to adapt software written for one type of operating system to another type. C has very small keywords. Set includes extensive library functions which enhance the basic functions.

	Year
	Language
	Developed by
	Remarks

	1960
	ALGOL
	International Committee
	Too General, too Abstract.

	1963
	CPL
	Cambridge University
	Hard to Learn, difficult to implement.

	1967
	BCPL
	Martin Richards at Cambridge University
	Could deal with only specific problems.

	1970
	B
	Ken Thompson at AT & T
	Could deal with only specific problems.

	1972
	C
	Dennis Ritchie at AT & T
	Lost generally of BCPL and B restored.

WHAT IS THE ANSI-C STANDARD?
When it became evident that the C programming language was becoming a very popular language available on a wide range of computers, a group of concerned individuals met to propose a standard set of rules for the use of the C programming language. The group represented all sectors of the software industry and after many meetings, and many preliminary drafts, they finally wrote an acceptable standard for the C language. It has been accepted by the American National Standards Institute (ANSI), and by the International Standards Organization (ISO). It is not forced upon any group or user, but since it is so widely accepted, it would be economic suicide for any compiler writer to refuse to conform to the standard.

‘C ‘is popularly know as the programmer’s language, since it was created, influenced and field tested by real working programmers. ‘C ‘is a simple, elegant programming language that is the choice of increasing number of programmers. C is the result of a development process that started with an older language called BCPL. BCPL was developed by Ken Thompson. B led to the development of C in the 1970s.

Possibly why C seems to be so popular is because it is reliable, simple and easy to use.

 **
Steps to Develop a Program

 The following steps are used in sequence for developing an efficient program:

· Specifying the problem statement

· Designing an algorithm

· Coding

· Debugging

· Testing and Validating

· Documentation and Maintenance.

 Specifying the Problem:
 The Problem which has to be implemented into a program must be thoroughly understood before the program is written. Problem must be analyzed to determine the input and output requirements of the program. A problem is created with these specifications.

Designing an Algorithm:
 With the problem statement obtained in the previous step, various methods available for obtaining the required solution are analyzed and the best suitable method is designed into algorithm.

 To improve clarity and understandability of the program flow charts are drawn using the algorithms.

 Coding:
 The actual program is written in the required programming language with the help of information depicted in flow charts and algorithms.

 Debugging:
 There is a possibility of occurrence of errors in programs. These errors must be removed to ensure proper working of programs. Hence error check is made. This process is known as “Debugging”.

 Types of errors that may occur in the program are:

 Syntactic Errors: These errors occur due to the usage of wrong syntax for the statements.

 Syntax means rules of writing the program.

 Example: x=z*/b;

There is syntax error in this statement. The rules of binary operators state that there cannot be more than one operator between two operands.
Runtime Errors: These Errors are determined at the execution time of the program.

Example: Divide by zero, Range out of bounds, Square root of a negative number

Logical Errors: These Errors occur due to incorrect usage of the instruction in the program. These errors are neither displayed during compilation or execution nor cause any obstruction to the program execution. They only cause incorrect outputs. Logical Errors are determined by analyzing the outputs for different possible inputs that can be applied to the program. By this way the program is validated.

Testing and Validating:
 Testing and Validation is performed to check whether the program is producing correct results or not for different values of input.

 Documentation and Maintenance:
 Documentation is the process of collecting, organizing and maintaining, in written the complete information of the program for future references. Maintenance is the process of upgrading the program according to the changing requirements.

 For writing up the instructions as a program in the way that a computer can understand, we use programming languages.

**
C IS A MIDDLE-LEVEL LANGUAGE
 C is often called a middle level computer language. This does not mean that C is less powerful, harder to use, or less developed than a high-level language such as BASIC. Or Pascal, nor does it imply that C has the cumbersome nature of assembly language. Rather, C is thought of as middle – level language because it combines the best elements of high level languages with the control and flexibility of assembly languages.

 As middle – level language, C allows the manipulation of bits, bytes and addresses. Despite this fact, C code is also very portable. Portability means that it is easy to adapt software written for one type of computer or operation system to another type.

High Level Languages are: Ada, Modula-2, Pascal, COBOL, FORTRAN, and BASIC

Middle Level Languages are: Java, C, C++, Forth, and Macro-assembler

Low Level Languages are: Assembler.

LANGUAGE TRANSLATORS
 Computers can understand only machine language instructions. Therefore, the program written in any other language should be translated into machine language.

 There are two types of translators.

1. Compiler

2. Interpreter

Difference between Compiler and Interpreter
A compiler checks the entire program at a time and if it is error free then it produces the machine language instruction.

The interpreter translates one statement at a time and if it is error free it produces the machine language instruction. Executing a program written in a high level language is a two step process.

· The code (source program) should be compiled (i.e., by either compiler or interpreter) to produce machine language instructions.

· Then the machine instructions are loaded into memory and it gets executed.

COMPILERS vs. INTERPRETERS
 It is important to understand that a computer language defines the nature of a program and not the way that the program will be executed. There are two general methods by which a program can be executed. It can be compiled, or it can be interpreted. Although programs written in any computer language can be compiled or interpreted, some languages are designed more for one form or execution than the other. For example, Java was designed to be interpreted, and C was designed to be compiled. However, in the case of C, it is important to understand that it was specifically optimized as a compiled language.

 In its simplest form, an interpreter reads the source code of your program one line at a time, performing the specific instructions contained in that line. This is the way earlier version of BASIC worked. In languages such as Java, a program’s source code is first converted into an intermediary form that is then interpreted. In either case, a run-time interpreter is still required to be present to execute the program.

 A compiler reads the entire program and converts it into object code, which is a translation of the program’s source code into a form that the computer can execute directly. Object code is also referred to as binary code or machine code. Once the program is compiled, a line of source code is no longer meaningful in the execution of your program. In general, an interpreted program runs, slower than a compiled program. Hence a compiler converts a program’s source code into object code that a computer can execute directly. Therefore, compilation is a one time cost, while interpretation incurs an overhead each time a program is run.

Structure of a C program

	Documentation section

	Preprocessor directives

	Global declarations

	Function declarations

	// main function

main()

{
 Local variable declaration;

 Statement 1;

 Statement N;

}

	Function definition

· The documentation section consists of a set of commands that gives details about the program.

· The preprocessor directives consists of #include statements to include the header files that should be included in our program to use the built in functions and #define statements that define the symbolic constants.

· The global variables are declared next.

· The functions other than main which are called inside the main function are declared next.

· The main function consists of 2 parts local variable declarations and the executable part which are set of instructions that perform the specific task. The execution of the program starts from the mian().

· Following the main function are the definition of user defined functions.(optional)

The following are some rules to write C programs
1. All C statements must end with semicolon.

2. C is case – sensitive. That is, upper case and lower case characters are different. Generally the statements are typed in lower case.

3. A C statement can be written in one line or it can split into multiple lines.

4. Braces must always match upon pairs, i.e., every opening brace ‘{‘ must have a matching closing brace ‘}’.

5. A comment can be split into more than one line.

 REVIEW OF TERMS
The terms that follow will be used frequently throughout the C. you should be completely familiar with them.

· Source Code: The text of a program that a user can read commonly thought of as the program. The source code is input into the C compiler.

· Object Code: Translation of the source code of a program into machine code, which the computer can read and execute directly. Object code is input to the linker.

· Linker: A program that links separately compiled modules into one program. It also combines the functions in the Standard C library with the code that you wrote. The output of the linker is an executable program.

· Library: The file containing the standard functions that your program can use. These functions include all I/O operations as well as other useful routines.

· Compile Time: The time during which your program is being compiled.

· Run Time: The time during which your program is executing.

Character set

Character set are the set of alphabets, letters and some special characters that are valid in C language.
Alphabets:

Uppercase: A B C X Y Z

Lowercase: a b c x y z

Digits:

0 1 2 3 4 5 6 8 9

Special Characters:

	,
	<
	>
	.
	_
	(
)
	;
	$
	:
	%

	'
	&
	{
	}
	"
	^
	!
	*
	/
	|
	-

	[
]
	#
	?
	
	
	
	
	
	
	

	\
	~
	+
	
	
	
	
	
	
	
	

White space Characters:

blank space, new line, horizontal tab, carriage return and form feed

Keywords:

Keywords are the reserved words used in programming. Each keywords has fixed meaning and that cannot be changed by user. For example:

	int money; Here, int is a keyword that indicates,
 'money' is of type integer. As, C programming is case sensitive, all keywords must be written in lowercase. Here is the list of all keywords predefined by ANSI C.Keywords in C Language

	Auto
	double
	int
	Struct

	Break
	else
	long
	Switch

	Case
	enum
	register
	Typedef

	Char
	extern
	return
	Union

	Continue
	For
	signed
	Void

	Do
	If
	static
	While

	Default
	goto
	sizeof
	Volatile

	Const
	float
	short
	Unsigned

Besides these keywords, there are some additional keywords supported by Turbo C.

	Additional Keywords for Borland C

	asm
	Far
	interrupt
	pascal
	near
	huge
	cdecl

All these keywords, their syntax and application will be discussed in their respective topics. However, if you want brief information about these keywords without going further visit page: list of all C keywords.

Identifiers

In C programming, identifiers are names given to C entities, such as variables, functions, structures etc. Identifier are created to give unique name to C entities to identify it during the execution of program. For example:

int money;

int mango_tree;

Here, money is a identifier which denotes a variable of type integer. Similarly, mango_tree is another identifier, which denotes another variable of type integer.

Rules for writing identifier
1. An identifier can be composed of letters (both uppercase and lowercase letters), digits and underscore '_' only.

2. The first letter of identifier should be either a letter or an underscore. But, it is discouraged to start an identifier name with an underscore though it is legal. It is because, identifier that starts with underscore can conflict with system names. In such cases, compiler will complain about it. Some system names that start with underscore are _fileno, _iob, _wfopen etc.

3. There is no rule for the length of an identifier. However, the first 31 characters of an identifier are discriminated by the compiler. So, the first 31 letters of two identifiers in a program should be different.

In C, variable(data) should be declared before it can be used in program. Data types are the keywords, which are used for assigning a type to a variable.

Data types in C
1. Fundamental Data Types

· Integer types

· Floating Type

· Character types

2. Derived Data Types

· Arrays

· Pointers

· Structures

· Enumeration

Syntax for declaration of a variable

data_type variable_name;

Integer data types

Keyword int is used for declaring the variable with integer type. For example:

int var1;

Here, var1 is a variable of type integer.

The size of int is either 2 bytes(In older PC's) or 4 bytes. If you consider an integer having size of 4 byte(equal to 32 bits), it can take 232 distinct states as: -231,-231+1, ...,-2, -1, 0, 1, 2, ..., 231-2, 231-1

Similarly, int of 2 bytes, it can take 216 distinct states from -215 to 215-1. If you try to store larger number than 231-1, i.e,+2147483647 and smaller number than -231, i.e, -2147483648, program will not run correctly.

Floating types

Variables of floating types can hold real values(numbers) such as: 2.34, -9.382 etc. Keywords either float or double is used for declaring floating type variable. For example:

float var2;

double var3;

Here, both var2 and var3 are floating type variables.

In C, floating values can be represented in exponential form as well. For example:

float var3=22.442e2

Difference between float and double

Generally the size of float(Single precision float data type) is 4 bytes and that of double(Double precision float data type) is 8 bytes. Floating point variables has a precision of 6 digits whereas the the precision of double is 14 digits.

Note: Precision describes the number of significant decimal places that a floating values carries.

Character types

Keyword char is used for declaring the variable of character type. For example:

char var4='h';

Here, var4 is a variable of type character which is storing a character 'h'.

The size of char is 1 byte. The character data type consists of ASCII characters. Each character is given a specific value. For example:

For, 'a', value =97

For, 'b', value=98

For, 'A', value=65

For, '&', value=33

For, '2', value=49

Qualifiers alters the meaning of base data types to yield a new data type.

Size qualifiers:
Size qualifiers alters the size of basic data type. The keywords long and short are two size qualifiers. For example:

long int i;

The size of int is either 2 bytes or 4 bytes but, when long keyword is used, that variable will be either 4 bytes of 8 bytes. Learn more about long keyword in C programming. If the larger size of variable is not needed then, short keyword can be used in similar manner as long keyword.

Sign qualifiers:
Whether a variable can hold only positive value or both values is specified by sign qualifiers. Keywords signed and unsigned are used for sign qualifiers.

unsigned int a;

// unsigned variable can hold zero and positive values only

It is not necessary to define variable using keyword signed because, a variable is signed by default. Sign qualifiers can be applied to only int and char data types. For a int variable of size 4 bytes it can hold data from -231 to 231-1 but, if that variable is defined unsigned, it can hold data from 0 to 232 -1.

Constant qualifiers
Constant qualifiers can be declared with keyword const. An object declared by const cannot be modified.

const int p=20;

The value of p cannot be changed in the program.

Volatile qualifiers:
A variable should be declared volatile whenever its value can be changed by some external sources outside program. Keyword volatile is used to indicate volatile variable.

Operators in C programming
Operators are the symbol which operates on value or a variable. For example: + is a operator to perform addition.

C programming language has wide range of operators to perform various operations. For better understanding of operators, these operators can be classified as:

	Operators in C programming

	Arithmetic Operators

	Increment and Decrement Operators

	Assignment Operators

	Relational Operators

	Logical Operators

	Conditional Operators

	Bitwise Operators

	Special Operators

Arithmetic Operators

	Operator
	Meaning of Operator

	+
	addition or unary plus

	-
	subtraction or unary minus

	*
	Multiplication

	/
	Division

	%
	remainder after division(modulo division)

Example of working of arithmetic operators

/* Program to demonstrate the working of arithmetic operators in C. */
#include <stdio.h>
int main(){
 int a=9,b=4,c;
 c=a+b;
 printf("a+b=%d\n",c);
 c=a-b;
 printf("a-b=%d\n",c);
 c=a*b;
 printf("a*b=%d\n",c);
 c=a/b;
 printf("a/b=%d\n",c);
 c=a%b;
 printf("Remainder when a divided by b=%d\n",c);
 return 0;
}
a+b=13

a-b=5

a*b=36

a/b=2

Remainder when a divided by b=1
Explanation
Here, the operators +, - and * performed normally as you expected. In normal calculation, 9/4 equals to 2.25. But, the output is 2 in this program. It is because, a and b are both integers. So, the output is also integer and the compiler neglects the term after decimal point and shows answer 2 instead of 2.25. And, finally a%b is 1,i.e. ,when a=9 is divided by b=4, remainder is 1.

Suppose a=5.0, b=2.0, c=5 and d=2

In C programming,

a/b=2.5

a/d=2.5

c/b=2.5

c/d=2

Note: % operator can only be used with integers.

Increment and decrement operators

In C, ++ and -- are called increment and decrement operators respectively. Both of these operators are unary operators, i.e, used on single operand. ++ adds 1 to operand and -- subtracts 1 to operand respectively. For example:

Let a=5 and b=10

a++; //a becomes 6

a--; //a becomes 5

++a; //a becomes 6

--a; //a becomes 5

Difference between ++ and -- operator as postfix and prefix
When i++ is used as prefix(like: ++var), ++var will increment the value of var and then return it but, if ++ is used as postfix(like: var++), operator will return the value of operand first and then only increment it. This can be demonstrated by an example:

#include <stdio.h>
int main(){
 int c=2,d=2;
 printf("%d\n",c++); //this statement displays 2 then, only c incremented by 1 to 3.
 printf("%d",++c); //this statement increments 1 to c then, only c is displayed.
 return 0;
}
Output
2

4

Assignment Operators

The most common assignment operator is =. This operator assigns the value in right side to the left side. For example:

var=5 //5 is assigned to var

a=c; //value of c is assigned to a

5=c; // Error! 5 is a constant.

	Operator
	Example
	Same as

	=
	a=b
	a=b

	+=
	a+=b
	a=a+b

	-=
	a-=b
	a=a-b

	*=
	a*=b
	a=a*b

	/=
	a/=b
	a=a/b

	%=
	a%=b
	a=a%b

Relational Operator

Relational operators checks relationship between two operands. If the relation is true, it returns value 1 and if the relation is false, it returns value 0. For example:

a>b

Here, > is a relational operator. If a is greater than b, a>b returns 1 if not then, it returns 0.

Relational operators are used in decision making and loops in C programming.

	Operator
	Meaning of Operator
	Example

	==
	Equal to
	5==3 returns false (0)

	>
	Greater than
	5>3 returns true (1)

	<
	Less than
	5<3 returns false (0)

	!=
	Not equal to
	5!=3 returns true(1)

	>=
	Greater than or equal to
	5>=3 returns true (1)

	<=
	Less than or equal to
	5<=3 return false (0)

Logical Operators

Logical operators are used to combine expressions containing relation operators. In C, there are 3 logical operators:

	Operator
	Meaning of Operator
	Example

	&&
	Logial AND
	If c=5 and d=2 then,((c==5) && (d>5)) returns false.

	||
	Logical OR
	If c=5 and d=2 then, ((c==5) || (d>5)) returns true.

	!
	Logical NOT
	If c=5 then, !(c==5) returns false.

Explanation
For expression, ((c==5) && (d>5)) to be true, both c==5 and d>5 should be true but, (d>5) is false in the given example. So, the expression is false. For expression ((c==5) || (d>5)) to be true, either the expression should be true. Since, (c==5) is true. So, the expression is true. Since, expression (c==5) is true, !(c==5) is false.

Conditional Operator

Conditional operator takes three operands and consists of two symbols ? and : . Conditional operators are used for decision making in C. For example:

c=(c>0)?10:-10;

If c is greater than 0, value of c will be 10 but, if c is less than 0, value of c will be -10.

Bitwise Operators

A bitwise operator works on each bit of data. Bitwise operators are used in bit level programming.

	Operators
	Meaning of operators

	&
	Bitwise AND

	|
	Bitwise OR

	^
	Bitwise exclusive OR

	~
	Bitwise complement

	<<
	Shift left

	>>
	Shift right

Bitwise operator is advance topic in programming . Learn more about bitwise operator in C programming.

Other Operators

Comma Operator

Comma operators are used to link related expressions together. For example:

int a,c=5,d;

The sizeof operator

It is a unary operator which is used in finding the size of data type, constant, arrays, structure etc.
For example:

#include <stdio.h>
int main(){
 int a;
 float b;
 double c;
 char d;
 printf("Size of int=%d bytes\n",sizeof(a));
 printf("Size of float=%d bytes\n",sizeof(b));
 printf("Size of double=%d bytes\n",sizeof(c));
 printf("Size of char=%d byte\n",sizeof(d));
 return 0;
}
Output
Size of int=4 bytes

Size of float=4 bytes

Size of double=8 bytes

Size of char=1 byte

Conditional operators (?:)

Conditional operators are used in decision making in C programming, i.e, executes different statements according to test condition whether it is either true or false.

Syntax of conditional operators

conditional_expression ? expression1:expression2

If the test condition is true, expression1 is returned and if false expression2 is returned.

Example of conditional operator

#include <stdio.h>
int main(){
 char feb;
 int days;
 printf("Enter l if the year is leap year otherwise enter 0: ");
 scanf("%c",&feb);
 days=(feb=='l')?29:28;
 /*If test condition (feb=='l') is true, days will be equal to 29. */
 /*If test condition (feb=='l') is false, days will be equal to 28. */

 printf("Number of days in February = %d",days);
 return 0;
}
Output
Enter l if the year is leap year otherwise enter n: l

Number of days in February = 29
Other operators such as &(reference operator), *(dereference operator) and ->(member selection) operator will be discussed in pointer chapter.

